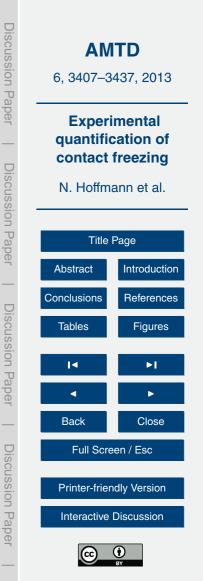
Atmos. Meas. Tech. Discuss., 6, 3407–3437, 2013 www.atmos-meas-tech-discuss.net/6/3407/2013/ doi:10.5194/amtd-6-3407-2013 © Author(s) 2013. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Measurement Techniques (AMT). Please refer to the corresponding final paper in AMT if available.

Experimental quantification of contact freezing in an electrodynamic balance


N. Hoffmann, A. Kiselev, D. Rzesanke, D. Duft, and T. Leisner

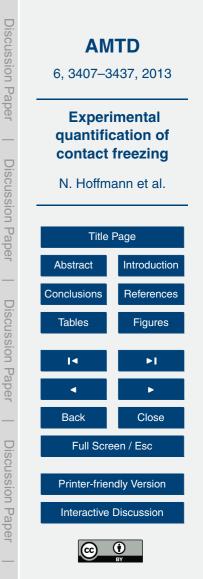
Karlsruhe Institute of Technology, Mailbox 3640, 76021 Karlsruhe, Germany

Received: 14 March 2013 - Accepted: 31 March 2013 - Published: 10 April 2013

Correspondence to: N. Hoffmann (nadine.hoffmann@kit.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

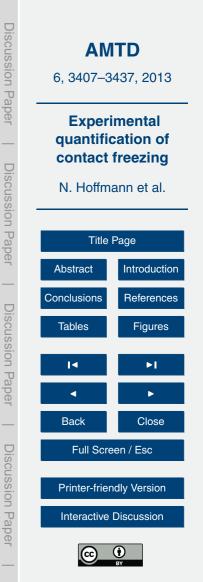

Heterogeneous nucleation of ice in a supercooled water droplet induced by an external contact with a dry aerosol particle has long been known to be more effective than freezing induced by the same nucleus immersed in the droplet. However, the experi-

- ⁵ mental quantification of contact freezing is challenging. Here we report an experimental method allowing to determine the temperature dependent ice nucleation probability of size selected aerosol particles. The method uses supercooled charged water droplets suspended in a laminar flow of air containing aerosol particles as contact freezing nuclei. The rate of droplet-particle collisions is calculated numerically with account for
- Coulomb attraction, drag force and induced dipole interaction between charged droplet and aerosol particles. The calculation is verified by direct counting of aerosol particles collected by a levitated droplet. By repeating the experiment on individual droplets for a sufficient number of times, we are able to reproduce the statistical freezing behavior of a large ensemble of supercooled droplets and measure the average rate of freez-
- ¹⁵ ing events. The freezing rate is equal to the product of the droplet–particle collision rate and the probability of freezing on a single contact, the latter being a function of temperature, size and composition of the contact ice nuclei. Based on these observations, we show that for the types of particles investigated so far, contact freezing is the dominating freezing mechanism on the time scale of our experiment.

20 **1** Introduction

25

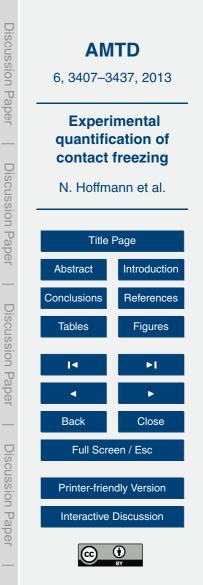
Clouds have a considerable effect on the Earth's climate (Solomon et al., 2007). One of the most uncertain aspects in their formation, persistence, and ultimate dissipation is the role played by aerosols (Levin and Cotton, 2009). Whereas some of the interaction processes, for example nucleation and condensational growth of cloud droplets on the aerosol particles are quite well characterized, ice formation in mixed phase clouds (MPC) and especially the potential role of contact freezing is much less understood.



MPCs containing liquid droplets and ice crystals cover about 15% of the globe with the highest occurrence in mid-latitudes and over the polar oceans (Welti et al., 2012). Contact freezing is one of four heterogeneous ice formation mechanisms responsible for glaciation of such clouds the other three being condensation, immersion, and de-

- ⁵ position freezing. It occurs when a aerosol particle makes contact with a supercooled cloud droplet and causes its freezing (Vali, 1985). Contact freezing might eventually explain the discrepancy between the measured number of ice nuclei (IN) and observed number concentration of ice crystals in a cloud (Avramov et al., 2011; Fridlind et al., 2007). Experimental findings suggest that contact freezing efficiency (i.e. the probabil-
- ity of supercooled droplet freezing on a single contact with the IN) is a function of the temperature of the supercooled droplet and the size of the contacting particle, but the comprehensive characterization of potential contact ice nuclei in the relevant temperature range is still missing (Fan et al., 2009). Currently, no theory exists that would allow even qualitative prediction of the IN efficiency (in any freezing mode) given the chemi-
- ¹⁵ cal structure and morphology of the IN particle. Although several studies (Durant and Shaw, 2005; Fornea et al., 2009; Fukuta, 1975) consistently reported contact freezing taking place at temperatures that were a few degrees higher than the immersion freezing initiated by the same IN, no generally accepted explanation of this phenomenon exists up to this day. In particular, it is not known whether the enhancement is caused
- ²⁰ by some kind of pre-activation of the IN particle shortly before the contact with the supercooled droplet (Cooper, 1974), or by the facilitation of ice nucleation in the surface layer of a water droplet (Djikaev et al., 2002).

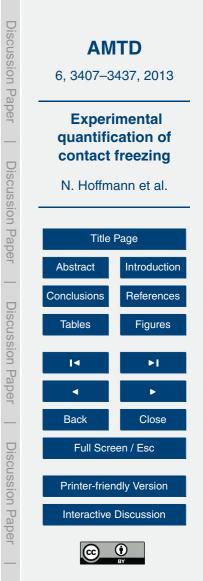
Even if not understood, the characterization of the atmospheric contact ice nuclei over the wide temperature range is urgently needed for implementation into the cloud models (Phillips et al., 2008). The laboratory measurements of this parameter follow


²⁵ models (Phillips et al., 2008). The laboratory measurements of this parameter follow two different approaches. In the experiments reported by (Fornea et al., 2009) and (Shaw et al., 2005) a substrate-supported supercooled microdroplet was exposed repeatedly to a localized contact with a individual particle serving as a contact IN. The details of the droplet-IN interaction (depth of particle penetration and morphology of

the submersed part of the particle) are not known in this case and only characteristic freezing temperatures can be recorded. However, the results may vary depending on the cooling rate and on the way the cooling of the substrate and the environmental chamber is realized (Gurganus et al., 2011) and therefore are hardly suitable for parametrization.

The second approach relies on the statistical evaluation of the freezing rate when an individual droplet or an ensemble of supercooled droplets interacts with the system of aerosol particles (DeMott, 1995; Diehl et al., 2002; Ladino et al., 2011a; Levin and Yankofsky, 1983; Svensson et al., 2009; Bunker et al., 2012). In this case the total rate of freezing events is measured and the ice nucleating efficiency can be estimated if the collision rate is known independently or can be estimated. The rate of collision events is usually evaluated indirectly either by analyzing the droplet residuals (Bunker et al., 2012) or calculated numerically, if the number concentration of aerosol particles and the

- interaction time is known (Svensson et al., 2009). Whatever the method, the accuracy
 of the collision rate determines the uncertainty of the freezing efficiency obtained in the experiment. Theoretical calculation of collection efficiency of a droplet in a cloud environment has been the subject of very intensive studies driven by the necessity to explain both warm and cold (i.e. involving ice phase) precipitation in a convective cloud. With respect to the contact freezing experiments, the attempts to calculate the
 collection efficiencies have been undertaken for the droplet-aerosol system dominated
- ²⁰ collection efficiencies have been undertaken for the droplet-aerosol system dominated by Brownian diffusion (DeMott et al., 1983), with account for phoretic forces (see Ladino et al., 2011b and references therein), and for the situation where either droplets or aerosol particles were strongly charged (Tinsley, 2008). In all these studies the aerosol particles were kept spherical and monodisperse.
- To this day, however, neither of the approaches has been able to provide an answer to the fundamental question, what microphysical features of the particle–droplet system are responsible for the observed enhanced ice nucleation probability in the contact mode.

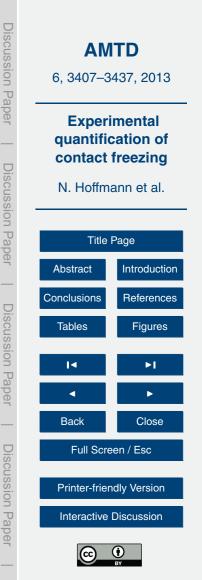

In the following we present a method of measuring the contact freezing efficiency of mineral dust particles colliding with a supercooled water droplet suspended in an electrodynamic balance (EDB). We show, that the rate of collection of aerosol particles by a strongly charged droplet can be calculated with high accuracy taking into account various electrostatic interactions. We also show how the calculated collection efficiency can be verified independently and demonstrate the good agreement between the predicted and measured values. Finally, we present exemplary data for contact freezing induced by mobility selected particles of two different mineral dusts (kaolinite and hematite) and show that contact freezing is the dominating freezing mechanism on the time scales of experiment.

2 Experimental

2.1 Aerosol generation

As a proxy for typical mineral dust we have chosen kaolinite (product name KGa-1b), obtained from the Source Clays Repository of The Clay Minerals Society (CMS, located at Purdue University, West Lafayette, Indiana, USA), and cubic hematite (Fe₂O₃), synthesized in our laboratory. Kaolinite KGa-1b is a well crystallized, 1:1 layered diocathedral phyllosilicate (Giese and Oss, 2002) of the Kaolin-Serpentine group (the other polymorphs of kaolinite are the less common dickite, nacrite, and halloysite, see King, 2009). It is essentially an aluminum silicate which structural unit is described by the chemical formula Al₂Si₂O₅(OH)₄. Crystals of kaolinite have the form of pseudo-hexagonal plates with the average width of 0.2 to 0.6 μm, reflecting the internal arrangement of tetrabedral-potabedral building units (Fig. 1). According to CMS Source Clay

ment of tetrahedral-octahedral building units (Fig. 1). According to CMS Source Clay Physical/Chemical Data and as confirmed by our own microprobe energy-dispersive Xray (EDX) analysis, KGa-1b consists of more than 95 w% kaolinite, although anatase (TiO₂), Fe oxides, quartz, and micas are observed in trace abundances (Pruett and Webb, 1993).

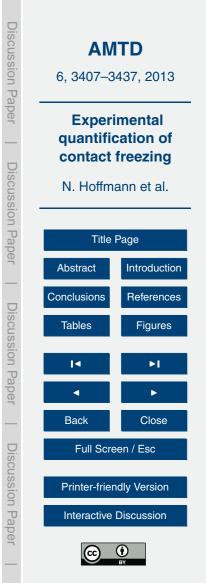

Pseudo-cubic hematite particles were synthesized by hydrolysis of ferric chloride (FeCl₃) solutions in NaOH according to the gel-sol method (54 g FeCl₃, 21.6 g NaOH for particles with a side length of 900 nm and 54 g FeCl₃, 22.8 g NaOH for particles with a side length of 300 nm) described in (Sugimoto et al., 1993), (Kandori et al., 1992), and (Sugimoto and Sakata, 1992). The hematite particles were produced either in form of suspensions in deionized water (NANOpure[®] Infinity Base Unit, Barnstead-Thermolyne Corporation) or freeze dried yielding the powder form. The particles have a rounded cubic shape with a side length of about 900 nm (Fig. 2). The shape and average size of the hematite particles in a suspension were controlled prior to aerosol dispersion in the scanning electron microscope (SEM) (ESEM FEI Quanta 650 FEG).

The aerosol generation of kaolinite and hematite in a powder form was realized in a fluidized bed generator (FBG, TSI 3400A), which was operated with a dry flow of synthetic air (20 sl min⁻¹, dew point temperature 213 K). To narrow down the size range of the generated kaolinite particles, the aerosol flow was sent through a multi¹⁵ orifice rotating stage cascade impactor (HAUKE, LPI-ROT 25/0018), operated with 5 impactor stages characterized by cut-off diameters of 2 μm. A fraction of the aerosol flow (0.3 sl min⁻¹) is diverted into the Differential Mobility Analyzer (DMA, TSI 3080) to select the particles with a desired mobility diameter. To ensure a low humidity of the sample flow, with a frost point temperature below the temperature in the EDB to avoid ice nucleation on the electrodes, an additional diffusion dryer was installed into the sheath flow loop of the DMA.

To generate hematite particles from a suspension we used the compressed air liquid atomizer (TSI 3076) operated with 3 slmin⁻¹ flow of air. The aerosol flow was then dried in the diffusion dryer and part of it (0.3 slmin⁻¹) was directed into the DMA, which was

set either to 300 nm or 970 nm mobility diameter and operated at 1 : 5 sample-to-sheath flow ratio.

Out of the DMA the gas flow containing aerosol particles (PSL, kaolinite, or hematite) was passed through the precooler and electrostatic precipitator and delivered into the


EDB. Downstream of the EDB the particles were continuously counted by an Ultrafine Condensation Particle Counter (UCPC, TSI 3776).

For the SEM analysis the dispersed aerosol particles were collected onto a 47 mm Nuclepore[®] filter (Whatman Nuclepore Track-Etched-Membranes, 0.2 µm pore size) placed into a sample holder that was installed downstream of the DMA. A section of a loaded filter was cut out, sputter-coated with a Platinum layer of 1 nm thickness and transferred into the SEM for imaging. The images of the individual particles have been analyzed using the open source image analysis software ImageJ (http://rsbweb.nih.gov/ij/).

10 2.2 Experimental setup

The experimental setup (Fig. 3) was build around an electrodynamic balance (EDB) of the classical hyperboloidal type (Paul and Raether, 1955; Wuerker et al., 1959). The EDB allows contact-free storage of a charged droplet and is described in detail in (Rzesanke et al., 2012). The setup has been modified and connected to an aerosol generation system to provide a vertical laminar flow of aerosol laden air around the suspended supercooled droplet. The horizontally mounted piezoelectric injector (GeSIM model A010-006 SPIP, cylindrical housing) is used to inject individual droplets of water in the diameter range from 80 to 100 μ m into the EDB. The actual droplet size is

- determined by comparing the measured intensity distribution of scattered light with the phase function calculated with Mie theory (Bohren and Huffman, 2004). The droplet is charged inductively to a value of approximately 1.6 pC during creation. The temperature of the EDB body can be controlled in the range from 230 to 300 K with an accuracy of ± 0.1 K, allowing droplet supercooling down to the temperature of homogeneous freezing (at about 236.5 K). The temperature within the EDB is continuously monitored with
- temperature sensors (Pt100) located on each of the three electrodes. For the experiment described in this paper the flow from the aerosol generation system (0.3 sl min⁻¹) was connected to the bottom inlet of the EDB as shown in Fig. 3. To provide a possibility to remove the aerosol particles from the flow without disturbing the flow in the trap

we installed an electrostatic precipitator (EP) in front of the trap, which consists of two coaxial metal cylinders with the aerosol flowing in the gap between the cylinder walls. One of the cylinders is connected to a high voltage switch, capable of producing a radial electric field of 2 kV mm⁻¹. When actuated all charged particles will precipitate onto the electrodes, regardless of their polarity. In order to establish a well defined droplet temperature, the aerosol flow was preconditioned to the trap temperature in the precooler just before entering the trap. Great care has been taken to avoid turbulence in the trap. The laminarity of the flow in all points within the EDB was ensured by reducing the flow rate far below the Reynolds number values characteristic for turbulent conditions. The Computational Fluid Dynamics (CFD) simulations with the software package ANSYS

¹⁰ Computational Fluid Dynamics (CFD) simulations with the software package ANS CFX 13.0 have been carried out to confirm the flow laminarity.

2.3 Experimental sequence

25

The injection of the droplet, the registration of a freezing event and the ejection of the droplet are automated as described in (Rzesanke et al., 2012). At the beginning of
each cycle a water droplet is injected into the EDB and its corresponding light scattering pattern is recorded. If the droplet freezes during the preset maximum observation time, the time of freezing is registered and the frozen droplet is ejected. The freezing is detected by the strong enhancement of scattered light on the linear CCD array, which is used for the vertical droplet position control. The experimental cycle is repeated until the desired number of droplets is reached (typically 100 to 200 droplets were investigated in each experiment).

2.4 Determination of the collection efficiency

The ability to determine the rate of collisions is crucial for determination of the contact freezing efficiency. Therefore we verify the calculated collision rate experimentally by ejecting a droplet from the EDB and collecting it on a clean silicon substrate after being exposed to the aerosol flow for a well defined period. Prior to this process the aerosol

particles are removed from the flow by the electrostatic precipitator in order to avoid that the particles are collected by the droplet during ejection, when the flow conditions are poorly determined. A metal rod with a small $(2 \times 2 \text{ mm})$ silicon wafer glued to its end is lowered down into the central part of the EDB through the air tight socket plug. Then the

- ⁵ DC voltage across the EDB is changed so that the droplet is shifted towards the silicon wafer out of the stable levitation range. From there it is aerodynamically accelerated by the sample flow towards the wafer and hits its surface. The rod is then raised into the warm part of the outlet connector and kept in this position until the droplet has completely evaporated and the temperature of the wafer has increased above the dew
- point temperature of the ambient air. Then the wafer is transferred on sample holder of scanning electron microscope (SEM), where the residual aerosol particles are counted and analyzed. To analyze frozen droplets in the same manner, an additional "collecting droplet" was placed in the center of the silicon wafer to avoid the bouncing of the ice crystal off the silicon surface. To facilitate the search of the submicrometer residual particles in the SEM, the "collecting droplet" has been doped with polystyrene latex
- ¹⁵ particles in the SEM, the "collecting droplet" has been doped with polystyrene latex microspheres (PSL, DUKE Scientific, nominal diameter 200 nm). Due to their spherical shape the PSL particles are easily recognizable in the SEM and help visualizing the boundary of the evaporated droplet. At the same time, the small PSL particles do not obscure the larger mineral dust particles.

20 3 Data evaluation

3.1 Statistical description of a freezing experiment

In the discussion that follows, we assume that the contact freezing is different from immersion freezing in a sense that contact freezing occurs immediately at the moment of contact between the supercooled droplet and the aerosol particle, whereas immersion freezing is a rate driven process with the rate of ice nucleation being a function

of temperature, surface area available for heterogeneous nucleation of ice and the propensity of the substrate to ice nucleation (Pruppacher and Klett, 2004).

A supercooled droplet suspended in a flow of aerosol particles may freeze along different pathways, either via contact freezing or immersion freezing due to the previously

- ⁵ collected particles (Fig. 4). The freezing may occur on the first contact with an ice nucleus (IN). Alternatively, the droplet may collect one or more INs without freezing and then freeze at the *n*th contact with an IN. Finally, the droplet can collect one or more INs and freeze along the immersion freezing pathway. In the following we show how the different freezing mechanisms can be handled separately.
- In a system of N_0 identical water droplets supercooled to a constant temperature T and subjected to a constant rate of contacts with aerosol particles that are taken up by the droplets, freezing is a random process described by a rate equation:

$$\frac{\mathrm{d}N_{\mathrm{u}}}{\mathrm{d}t} = -J_{\mathrm{tot}}(t) \cdot N_{\mathrm{u}} \tag{1}$$

where $N_{\rm u}$ is the number of unfrozen droplets and $J_{\rm tot}(t)$ is the total rate of freezing events.

To account for the different freezing mechanisms (Fig. 4) and assuming that droplets freeze independently, we separate the total rate of freezing into two parts: the rate of immersion freezing $J_i(t)$ and the rate of contact freezing J_c :

 $J_{\rm tot} = J_{\rm i} + J_{\rm c}$

²⁰ According to the classical nucleation theory for heterogeneous nucleation (Pruppacher and Klett, 2004), the total rate of immersion freezing would be a product of a nucleation rate coefficient j_i , the surface of a single immersed ice nucleus S_{IN} and the number of particles in the droplet n_{IN} . Assuming that all particles are identical, and taking into account that the number of particles collected by the droplet n_{IN} after time t is the product of the collection rate n_c and time t, we obtain:

 $J_{\rm i} = S_{\rm IN} \cdot j_{\rm i} \cdot n_{\rm c} \cdot t$

(2)

(3)

The rate of contact freezing events is given by the collection rate n_c times the probability of droplet freezing upon a single contact (in the following, contact freezing probability) e_c :

$$J_{\rm c} = n_{\rm c} \cdot e_{\rm c}$$

5

٨/

Combining Eqs. (2), (3), and (4), substituting into Eq. (1) and integrating yields:

$$\int_{N_{0}}^{N_{u}} \frac{dN'_{u}}{N'_{u}} = -\int_{0}^{t} n_{c} (S_{IN} j_{i} t' + e_{c}) dt'$$

$$\ln \left(\frac{N_{u}}{N_{0}}\right) = -\frac{1}{2} S_{IN} n_{c} j_{i} t^{2} - n_{c} e_{c} t$$
(6)

Equation (6) includes a quadratic time-dependent term describing the immersion freezing and the linear time-dependent term describing the contact freezing. A direct implication of such functional form is obvious: if we assume the rate of contact freezing events J_c being very small, the quadratic term (immersion freezing) will dominate the form of the function $\ln(N_u/N_0)$ plotted against time ("freezing curve"), which will have a parabolic shape; and vice versa, if contact freezing dominates, the equation simplifies to:

$$\ln\left(\frac{N_{\rm u}}{N_{\rm 0}}\right) = -n_{\rm c} \cdot e_{\rm c} \cdot t,$$

which yields a linear dependence of $\ln(N_u/N_0)$ on time. Using Eqs. (3) and (4) the condition for the linearity of the freezing curve $J_c \gg J_i$ can be rewritten:

$$e_{\rm c} \gg \frac{1}{2} S_{\rm IN} j_{\rm i} t$$

From this it follows that if we observe a linear freezing curve, the *probability of contact* freezing upon a single collision e_c is higher than the *probability of immersion freezing*

(4)

(7)

(8)

after waiting the time t_{max} , which in our experiment was typically set to 30 s. The above expression Eq. (8) also provides the basis for comparison of the contact and immersion freezing rates for atmospherically relevant types of IN and realistic collision rates: for the given rate of collisions n_c between droplets supercooled to the temperature T_s and INs with characteristic values S_{IN} , j_i , and e_c , one can define the average time t_{im} after which the immersion freezing rate would start dominating the contact freezing:

$$t_{\rm im} = \frac{2e_{\rm c}}{S_{\rm IN}j_{\rm i}}$$

5

For the particles and conditions reported in this manuscript, the condition $t \ll t_{im}$ is always fulfilled. In this case the simplified Eq. (7) is valid, and with the slope of the freezing curve defined as m_{exp} we have a simple expression for the contact freezing probability e_c :

$$e_{\rm c} = \frac{m_{\rm exp}}{n_{\rm c}}$$

To calculate the contact freezing probability it is necessary to know the collision rate n_c . We show in the following section that under our experimental conditions, the collision rate can be calculated theoretically and can be verified experimentally for selected cases.

3.2 Calculation of collection efficiency

To calculate the rate of collisions of aerosol particles with a spherical droplet in a laminar flow one has to know the collection efficiency, which is defined as

20
$$\eta = \frac{\pi r_{\rm c}^2}{\pi (r_{\rm d} + r_{\rm p})^2}$$

Here $r_{\rm d}$ and $r_{\rm p}$ are the radii of the droplet and aerosol particle, respectively, and $r_{\rm c}$, measured perpendicular to the flow axis and sufficiently far upstream of the droplet, is

(9)

(10)

(11)

the largest offset a particle can have from the droplet center and still collide with the droplet.

The basic analytical formulation for the collection efficiency of charged aerosol particles of radius r_p and charge q_p , in a laminar gas flow of velocity v_0 around an oppositely charged sphere of radius r_d and charge q_d was given by (Kraemer and Johnstone, 1955):

$$\gamma = \frac{C_{\rm c}(r_{\rm p})q_{\rm p}q_{\rm d}}{6\pi^2\epsilon_0\mu r_{\rm p}r_{\rm d}^2v_0}$$

where ε_0 denotes the permittivity of free space, μ is the dynamic viscosity of the carrier gas and $C_c(r_p)$ is the Cunningham slip correction factor (Allen and Raabe, 1982).

- ¹⁰ This formulation includes drag force and static Coulomb interaction only. However, in the ideal case several other forces have to be considered: induced dipole interaction between charged droplet and polarizable aerosol particles (image force), the random motion of aerosol particles due to diffusion and turbulence effects, phoretic forces arising due to the temperature and water vapor density gradients around the droplet, and
- the repulsion forces between the individual aerosol particles. For our experimental conditions, we can neglect all of them except for the Coulomb force and the image force, which becomes a major interaction force at small separation distances. Under this assumption, the force exerted by a spherical droplet onto aerosol particle is given as follows:

$$F = -\left(\frac{\epsilon_{\rm r}-1}{\epsilon_{\rm r}+2}\right) \frac{d_{\rm p}^3 q_{\rm d}^2}{16\pi\epsilon_0 r_{\rm dp}^5} \cdot \boldsymbol{e}_{\rm dp} + \frac{q_{\rm d} q_{\rm p}}{4\pi\epsilon_0 r_{\rm dp}^2} \cdot \boldsymbol{e}_{\rm dp} + \frac{6\pi\mu r_{\rm p}}{C_{\rm c}(r_{\rm p})} \cdot \boldsymbol{w}$$
(13)

The first two terms describe the electrostatic force between the charged droplet and charged particle acting along the unit vector \boldsymbol{e}_{dp} and the third term describes the drag force aligned with the unit vector \boldsymbol{w} of the flow-particle relative velocity. Here r_{dp} is the droplet-particle separation distance, and \boldsymbol{e}_r is the dielectric constant of the particle

(12)

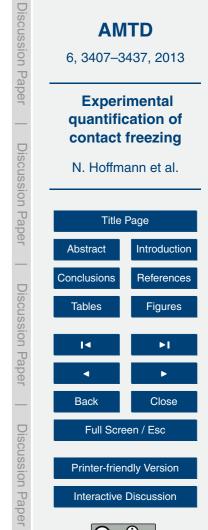
material. The magnitude of ε_r is not well defined for minerals used in the experiment we report here, however, the overall value of the collection efficiency is only slightly affected by the magnitude of ε_r . We used values of $\varepsilon_r = 25$ for hematite (Carmichael, 1982) and $\varepsilon_r = 5.1$ for kaolinite (Robinson, 2004).

The differential equation of particle motion in a viscous flow around the motionless droplet is than integrated numerically to obtain the particle trajectories (Fig. 5). The trajectory of special interest is the boundary trajectory, which defines the maximum offset r_c in the infinity. Once r_c is determined, the collection efficiency η is calculated according to Eq. (11), although the size of the aerosol particle is negligible compared to droplet radius, so that collection efficiency becomes $\eta = r_c^2/r_p^2$. Now we can calculate the collision rate n_c :

 $n_{\rm c} = \pi r_{\rm d}^2 \cdot N_{\rm c} \cdot v_{\rm s} \cdot \eta,$

where N_c is the particle number concentration as measured by the CPC downward from the EDB and v_s is the volume flowrate of the sample flow through the EDB.

15 4 Experimental results


20

25

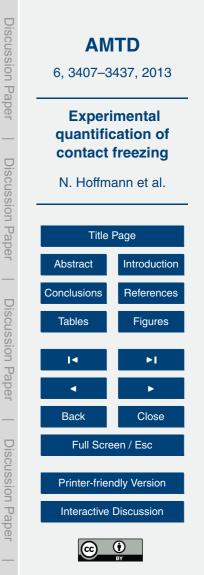
4.1 Experimental determination of collection efficiency

The method of n_c calculation described in the previous section is valid only for spherical and monodisperse aerosol particles. To verify the validity of the method and also to evaluate the error arising from the deviation of the aerosol from the ideality, we have compared the collection efficiencies measured experimentally as described in the Sect. 2.4 with numerical calculations.

The uncertainties that have to be considered when calculating the n_c are the particle size, shape and charge. Although the aerosol particles are preselected in the DMA and thus have the same electrical mobility, its value is a function of particle size, orientation and charge (Seinfeld and Pandis, 1998). Therefore, depending on the shape

(14)

of the size distribution of aerosol entering the DMA, a certain amount of larger particles carrying multiple charges will always penetrate the DMA. Generally, the number fraction of multiply charged particles is unknown. Furthermore, clay mineral particles have a plate agglomerate structure and therefore their electrical mobility is a function of particle orientation with respect to the flow lines. We have examined the influence


of particle shape by measuring the collection efficiencies for three different types of aerosol: Polystyrene Latex (PSL) microspheres, hematite cubical particles, and kaolinite KGa-1b. The results of the comparison are shown in the Table 1.

The PSL particles are ideal spheres with a very narrow size distribution ($\sigma \le 0.05$ according to the data sheet) and well known material density $\rho = 1.05 \,\mathrm{g\,cm^{-3}}$, so that the best possible match between the theory and experiment could be expected. However, the examination of the footprints of water droplets in SEM revealed higher fraction of agglomerated PSL particles than what one would anticipate given the actual number concentration of PSL particles in the prepared suspension. It is possible that the ag-

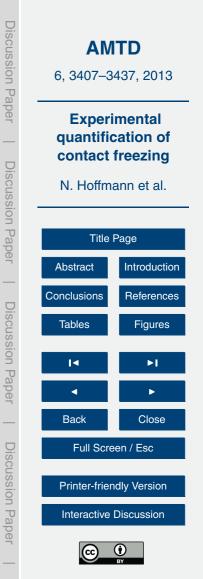
- ¹⁵ glomeration occurs on the surface of liquid droplet during the droplet evaporation, and there is no way of distinguishing these agglomerates from the multiplets of the PSL microspheres selected by DMA. To avoid this ambiguity, we have counted all multiplets as single particles within the droplet footprint, which resulted in a strong underestimation (by more than 50 %) of the collection efficiency as compared to the expected theoretical
- value. It is worth noting though, that the collection efficiency η was found to be almost equal for both 440 and 720 nm PSL microspheres, in agreement with the theory.

Also the collection efficiency measured and calculated for kaolinite KGa-1b particles having mobility diameter $d_m = 550$ nm is shown in Table 1. In the calculation the presence of single and doubly charged particles with the same mobility has been taken into

account. The fraction of particles carrying multiple charges has been evaluated from the SEM analysis of filter samples. In this case, the measured collection efficiency overestimated the calculated value by 20%, which is most likely to be attributed to the effect of highly non-spherical shape of the kaolinite particles.

The collection efficiency for hematite particles with a mobility diameter of $d_m =$ 970 nm has been measured by ejecting the frozen droplets as described in Sect. 2.4. Hematite particles of this size have a very uniform shape (as shown in Fig. 2) and a narrow size distribution (see Fig. 6). In this case the experimental collection efficiency was 5 in a very close agreement to the expected theoretical value.

The variability of the experimental collection efficiency is a result of the statistical nature of the particle collection process and the small number of investigated droplets.


4.2 Experimental determination of contact freezing probability

We have investigated the freezing of supercooled water droplets on a contact with kaolinite particles (mobility diameter of 550 nm) and with hematite particles (mobility diameter of 970 nm and 300 nm) within the temperature range between 240.3 K and 237.9 K. An average water droplet had a diameter of about 80 µm and charge of about 1.6 pC. Normally, 100 to 200 droplets were investigated for each temperature data point. To exclude the influence of contamination in the droplets and inside the EDB, at

- ¹⁵ the beginning of each experimental sequence the droplets were trapped with aerosol flow switched off and no freezing was observed. The number concentration of particles was about 150 cm⁻³ for kaolinite KGa-1b and about 300 cm⁻³ for both hematite samples. Figure 7 shows two typical freezing curves (in this example for kaolinite KGa-1b with a mobility diameter of 550 nm, EDB temperature set to 238.2 K and 239.1 K) as
- described in Sect. 2.3. We interpret the linearity of the freezing curve as an indication of dominating nature of contact freezing mechanism on the time scale of experiment 30 s (see Eq. 6 and discussion in the Sect. 3.1).

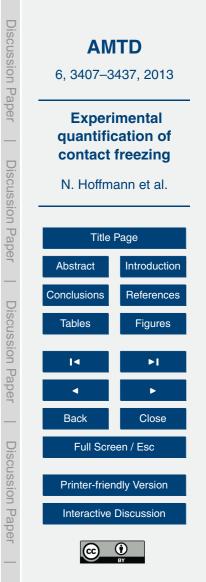
With the slope m_{exp} of the freezing curve and the calculated collection rate n_c we can now determine the contact freezing probability (Eq. 10). Figure 8 shows the results.

The contact freezing probability e_c is a steep function of temperature. The size and composition of the mineral dust particles seems to be essential for the contact freezing probability. For the contact IN of the same composition, the larger the particle, the

higher the contact freezing probability, in agreement with results reported by () for illite mineral dust particles.

Obviously kaolinite KGa-1b is a better contact IN than hematite. Freezing starts at a higher temperature and, although the diameter is smaller, the freezing probability is higher than the freezing probability of hematite. Even if we underestimate the collection efficiency of kaolinite particle by about 25% (compare to Table 1) and the value of freezing probability would decrease by about 25%, it is still significantly higher than the freezing probability found for hematite of 970 nm mobility diameter.

The discussion of the error bars of the collection efficiency is given in Sect. 4.1. ¹⁰ For the calculation of the freezing probability a variability of the slope of the freezing experiments have to be taken into account. This depends on the number of investigated droplets and in case of our experiments the variability is about 10%.


5 Conclusions

We have built a setup to measure the contact freezing probability of supercooled water
 droplets colliding with aerosol particles. The method is based on observation of individual droplets of pure water levitated in an EDB and exposed to a flow of dry aerosol particles passing through the EDB. The collection efficiency is calculated according to the method of Kraemer and Johnstone (1955) and was adapted for this experiment as described above. The experiments were conducted at temperatures from 240.3 to 237.9 K. Here we reported first measurements of the contact freezing probability for

²⁰ 237.9 K. Here we reported first measurements of the contact freezing probability for kaolinite from the Clay Mineral Society and hematite (produced in our laboratory).

A newly developed method was described to verify the calculated collection efficiency. It is based on the collection of the levitated droplets onto a Si-wafer followed by analysis of the residuals in SEM. Especially for compact shaped hematite particles we obtained a very good agreement with the calculations.

Based on the statistical analysis of the experimental results we have shown that the contact freezing is the dominating freezing mechanism on the time scale of the

experiment. This allows us to extract for the first time quantitative contact freezing probabilities for various realistic aerosol particles as a function of temperature. As expected, the resulting contact freezing probabilities do depend strongly on the temperature. Compared to kaolinite, hematite was found to be a rather poor ice nucleus both in contact and in immersion mode.

Outlook 6

5

A careful investigation of the size and aerosol morphology dependence of the contact freezing probability, as implicated by the results of this work, is currently performed in our laboratory for a wider range of mineral dust and other aerosol particles.

By switching off the aerosol flow before the contact freezing occurs (and therefore 10 allowing controlled collection of particles by a liquid droplet), the same experimental setup allows measurements of the *immersion freezing* of the supercooled microdroplets. Such an approach enables a direct comparison of the freezing rates induced by the same ice nuclei in contact and immersion ice nucleation mode. We will address these two issues in the forthcoming publications.

15

Acknowledgements. The reported study was supported by German Research Society (DfG) under contracts LE8343/2-3 and FOR 1525 INUIT. We would also like to thank Sarah Jaeger for the preparation of the hematite particles. The building of the electrostatic precipitator and LabView programming by Jens Nadolny is highly acknowledged.

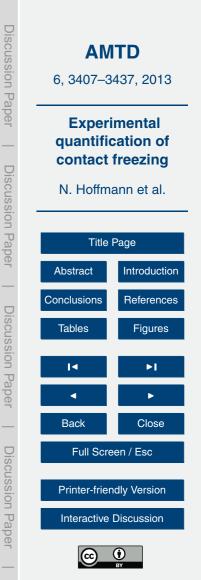
20

The service charges for this open access publication have been covered by a Research Centre of the Helmholtz Association.

References

- Allen, M. and Raabe, O.: Re-evaluation of millikan's oil drop data for the motion of small particles in air, J. Aerosol Sci., 13, 537–547, doi:10.1016/0021-8502(82)90019-2, 1982. 3419
 Avramov, A., Ackerman, A. S., Fridlind, A. M., van Diedenhoven, B., Botta, G., Aydin, K., Ver-
- ⁵ linde, J., Korolev, A. V., Strapp, J. W., McFarquhar, G. M., Jackson, R., Brooks, S. D., Glen, A., and Wolde, M.: Toward ice formation closure in Arctic mixed-phase boundary layer clouds during ISDAC, J. Geophys. Res., 116, D00T08, doi:10.1029/2011jd015910, 2011. 3409 Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small Particles, Wiley-

VCH, Weinheim, 2004. 3413


Bunker, K. W., China, S., Mazzoleni, C., Kostinski, A., and Cantrell, W.: Measurements of ice nucleation by mineral dusts in the contact mode, Atmos. Chem. Phys. Discuss., 12, 20291– 20309, doi:10.5194/acpd-12-20291-2012, 2012. 3410

Carmichael, R. S.: Handbook of Physical Properties of Rocks, CRC Press, Boca Raton, FL, United-States, 1982. 3420

- ¹⁵ Cooper, W. A.: Possible mechanism for contact nucleation, J. Atmos. Sci., 31, 1832–1837, 1974. 3409
 - DeMott, P. J.: Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols, Atmos. Res., 38, 63–99, 1995. 3410

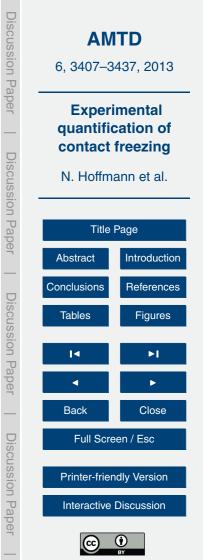
DeMott, P. J., Finnegan, W. G., and Grant, L. O.: An application of chemical kinetic-theory

- and methodology to characterize the ice nucleating properties of aerosols used for weathermodification, J. Clim. Appl. Meteorol., 22, 1190–1203, 1983. 3410
 - Diehl, K., Matthias-Maser, S., Jaenicke, R., and Mitra, S. K.: The ice nucleating ability of pollen, Part 2: laboratory studies in immersion and contact freezing modes, Atmos. Res., 61, 125– 133, 2002. 3410
- Djikaev, Y. S., Tabazadeh, A., Hamill, P., and Reiss, H.: Thermodynamic conditions for the surface-stimulated crystallization of atmospheric droplets, J. Phys. Chem. A, 106, 10247– 10253, 2002. 3409
 - Durant, A. J. and Shaw, R. A.: Evaporation freezing by contact nucleation inside-out, Geophys. Res. Lett., 32, L20814, doi:10.1029/2005gl024175, 2005. 3409
- ³⁰ Fan, J., Ovtchinnikov, M., Comstock, J. M., McFarlane, S. A., and Khain, A.: Ice formation in Arctic mixed-phase clouds: insights from a 3-D cloud-resolving model with size-resolved

aerosol and cloud microphysics, J. Geophys. Res., 114, D04205, doi;10.1029/2008jd010782, 2009. 3409

Fornea, A. P., Brooks, S. D., Dooley, J. B., and Saha, A.: Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot, and soil, J. Geophys. Res.-Atmos., 114, D13201,

⁵ doi:10.1029/2009jd011958, 2009. 3409


15

25

- Fridlind, A. M., Ackerman, A. S., McFarquhar, G., Zhang, G., Poellot, M. R., DeMott, P. J., Prenni, A. J., and Heymsfield, A. J.: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. model results, J. Geophys. Res., 112, D24202, doi:10.1029/2007jd008646, 2007. 3409
- ¹⁰ Fukuta, N.: Possible mechanism for contact nucleation comment, J. Atmos. Sci., 32, 2371– 2373, 1975. 3409
 - Giese, R. F. and Oss, C. J. V.: Colloid and Surface Properties of Clays and Related Minerals, Surfactant Science Series, vol. 105, Marcel Dekker, Inc., New York, 2002. 3411
 - Gurganus, C., Kostinski, A. B., and Shaw, R. A.: Fast imaging of freezing drops: no preference for nucleation at the contact line, J. Phys. Chem. Lett., 2, 1449–1454, 2011. 3410
 - Hoffmann, N., Duft, D., Kiselev, A., and Leisner, T.: Contact freezing efficiency of mineral dust aerosols studied in an electrodynamic balance: Quantitative size and temperature dependence for illite particles, Faraday Discuss., doi:10.1039/C3FD00033H, accepted, 2013. 3423 Kandori, K., Kawashima, Y., and Ishikawa, T.: Effects of citrate ions on the formation of monodis-
- 20 persed cubic hematite particles, J. Colloid Interf. Sci., 152, 284–288, doi:10.1016/0021-9797(92)90028-K, 1992. 3412
 - King, R.: Kaolinite, Geology Today, 25, 75–78, doi:10.1111/j.1365-2451.2009.00711.x, 2009. 3411
 - Kraemer, H. F. and Johnstone, H. F.: Collection of aerosol particles in presence of electrostatic fields, Ind. Eng. Chem., 47, 2426–2434, 1955. 3419, 3423
 - Ladino, L., Stetzer, O., Hattendorf, B., Gunther, D., Croft, B., and Lohmann, U.: Experimental study of collection efficiencies between submicron aerosols and cloud droplets, J. Atmos. Sci., 68, 1853–1864, 2011a. 3410

Ladino, L., Stetzer, O., Luond, F., Welti, A., and Lohmann, U.: Contact freezing experi-

- ³⁰ ments of kaolinite particles with cloud droplets, J. Geophys. Res.-Atmos., 116, D22202, doi:10.1029/2011jd015727, 2011b. 3410
 - Levin, Z. and Cotton, W. R. (Eds.): Aerosol Pollution Impact on Precipitation, a Scientific Review, Springer Science and Business Media B.V. 2009, Dordrecht, Holland, 2009. 3408

- Discussion Paper **AMTD** 6, 3407-3437, 2013 **Experimental** quantification of contact freezing **Discussion** Paper N. Hoffmann et al. **Title Page** Introduction Abstract Conclusions References **Discussion** Paper Tables Figures Back Close **Discussion** Paper Full Screen / Esc Printer-friendly Version Interactive Discussion

- Levin, Z. and Yankofsky, S. A.: Contact versus immersion freezing of freely suspended droplets by bacterial ice nuclei, J. Clim. Appl. Meteorol., 22, 1964–1966, 1983. 3410
- Paul, W. and Raether, M.: Das elektrische Massenfilter, Z. Phys., 140, 262–273, 1955. 3413 Phillips, V. T. J., DeMott, P. J., and Andronache, C.: An empirical parameterization of heteroge-
- neous ice nucleation for multiple chemical species of aerosol, J. Atmos. Sci., 65, 2757–2783, 2008. 3409
 - Pruett, R. J. and Webb, H. L.: Sampling and analysis of KGa-1B well-crystallized kaolin source clay, Clay. Clay Miner., 41, 514–19, 1993. 3411
 - Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, 2nd Edn., Kluver Academic Publishers, the Netherlands, 2004. 3416

10

- Robinson, D. A.: Measurement of the solid dielectric permittivity of clay minerals and granular samples using a time domain reflectometry immersion method, Vadose Zone J., 2, 705–713, 2004. 3420
- Rzesanke, D., Nadolny, J., Duft, D., Muller, R., Kiselev, A., and Leisner, T.: On the role of surface
- charges for homogeneous freezing of supercooled water microdroplets, Phys. Chem. Chem. Phys., 14, 9359–9363, 2012. 3413, 3414
 - Rzesanke, D., Duft, D., and Leisner, T.: Laboratory experiments on the microphysics of electrified cloud droplets, in: Climate and Weather of the Sun-Earth System (CAWSES), edited by: Lübken, F.-J., Springer Atmospheric Sciences, The Netherlands, 89–107, 2013.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, 1326 pp., John Wiley, Hoboken, NJ, 1998. 3420
 - Shaw, R. A., Durant, A. J., and Mi, Y.: Heterogeneous surface crystallization observed in undercooled water, J. Phys. Chem. B, 109, 9865–9868, 2005. 3409
 - Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Tignor, K. A., and Miller, H. (Eds.):
- IPCC, 2007: Climate Change 2007: the Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007. 3408

Sugimoto, T. and Sakata, K.: Preparation of monodisperse pseudocubic alfa-Fe₂O₃ particles

³⁰ from condensed ferric hydroxide gel, J. Colloid Interf. Sci., 152, 587–590, doi:10.1016/0021-9797(92)90062-Q, 1992. 3412

AMTD 6, 3407-3437, 2013 **Experimental** quantification of contact freezing N. Hoffmann et al. **Title Page** Introduction Abstract Conclusions References Tables Figures Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Sugimoto, T., Sakata, K., and Muramatsu, A.: Formation mechanism of monodisperse pseudocubic alfa-Fe₂O₃ particles from condensed ferric hydroxide gel, J. Colloid Interf. Sci., 159, 372–382, doi:10.1006/jcis.1993.1336, 1993. 3412

Svensson, E. A., Delval, C., von Hessberg, P., Johnson, M. S., and Pettersson, J. B. C.: Freez-

- ing of water droplets colliding with kaolinite particles, Atmos. Chem. Phys., 9, 4295–4300, doi:10.5194/acp-9-4295-2009, 2009. 3410
 - Tinsley, B. A.: The global atmospheric electric circuit and its effects on cloud microphysics, Rep. Prog. Phys., 71, 066801, doi:10.1088/0034-4885/71/6/066801, 2008. 3410

Vali, G.: Nucleation terminology, B. Am. Meteorol. Soc., 66, 1426–1427, 1985. 3409

- Welti, A., Lüönd, F., Kanji, Z. A., Stetzer, O., and Lohmann, U.: Time dependence of immersion freezing: an experimental study on size selected kaolinite particles, Atmos. Chem. Phys., 12, 9893–9907, doi:10.5194/acp-12-9893-2012, 2012. 3409
 - Wuerker, R. F., Shelton, H., and Langmuir, R. V.: Electrodynamic containment of charged particles, J. Appl. Phys., 30, 342–349, doi:10.1063/1.1735165, 1959. 3413

Table 1. Comparison of theoretical and experimental collection efficiency for PSL micropheres, kaolinite KGa-1b, and hematite particles.

Investigated material	Mobility diameter set by DMA [nm]	Total number of investigated droplets	Calculated collection efficiency	Experimental collection efficiency
PSL	440	7	0.32	0.17±0.16
PSL	720	6	0.31	0.18 ± 0.10
Kaolinite KGa-1b	550	4	0.57	0.76 ± 0.24
Hematite	970	8	0.88	0.90 ± 0.18

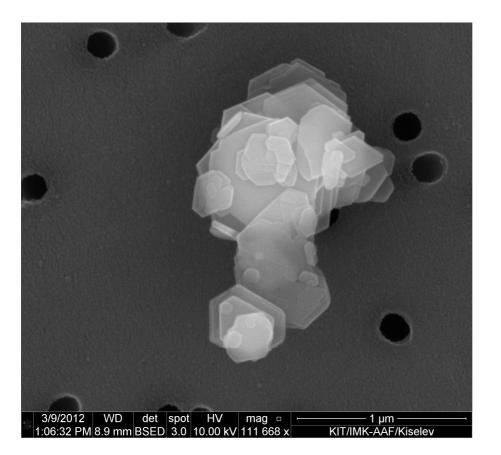
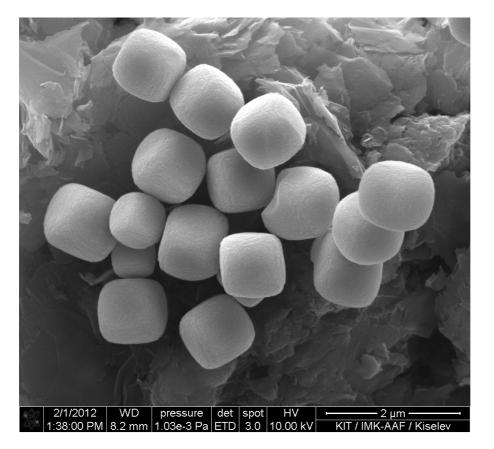
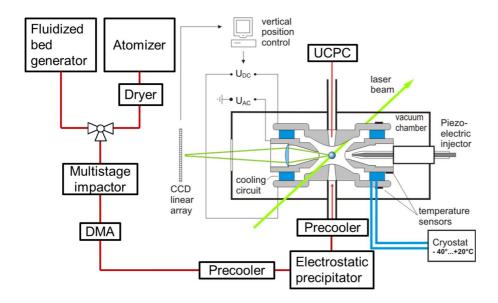
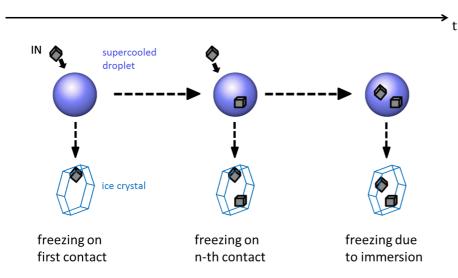
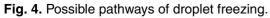
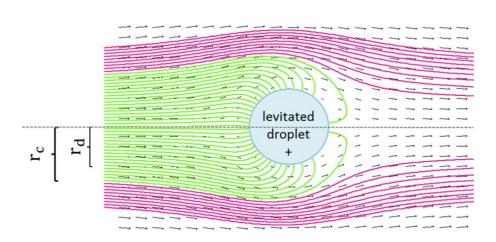



Fig. 1. SEM image of the typical agglomerate structure of a kaolinite KGa-1b particle on a nuclepore filter.


Fig. 3. Experimental setup.

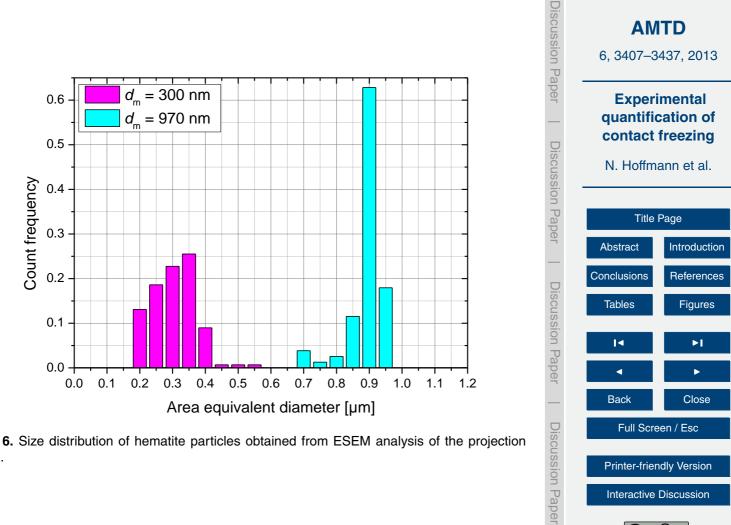


Fig. 5. Trajectories of charged aerosol particles in a laminar flow around a charged sphere. The arrows correspond to the vector field of the flow, green lines corresponds to the trajectories that lead to a collision. Temperature: 240 K, droplet charge: 1.63 pC, particle charge: 1 e, linear velocity of the flow at infinity: 0.471 ms^{-1} .

Printer-friendly Version

Interactive Discussion

Fig. 6. Size distribution of hematite particles obtained from ESEM analysis of the projection area.

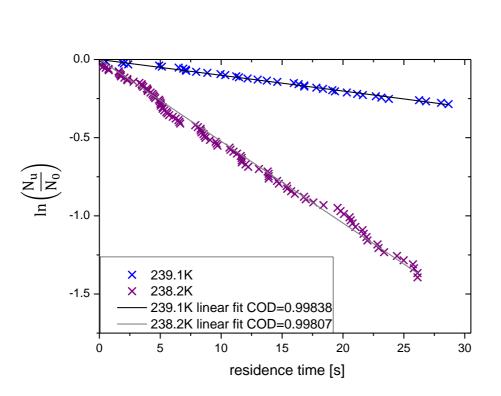
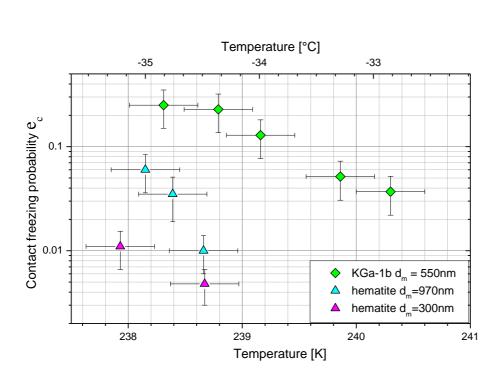
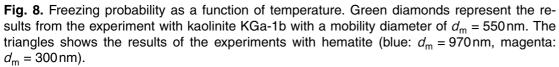




Fig. 7. Example measurements of contact freezing curves.

